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1 Problem Statement

We are given n teams and we wish to find out the number of unique arrangements
there are of the n teams as a tournament bracket, given a fixed shape (shape
will be discussed more in detail in section 4). Throughout this paper, we only
consider simple single-elimination tournaments.

To show two teams playing against each other, we will use ~ as the operator.
I am aware that ~ usually represents an equivalence relationship, but here we
will use it to show two teams playing against each other.

e.g. A ~ B represents A playing B

Note that if we have just two teams (team A and team B), team A playing B is
identical to B playing A. i.e. we must not double count A ~ B and B ~ A.

A~B=B~A (1)

Funny enough, the symmetric property of the equivalence relationship is
actually kept here.

We are going to define a tournament structure as a collection of teams playing
each other, but each team is represented by X1, X5, ..., X, instead of by letters.
The standard letters A, B, C, D, ... will represent an actual team in a particular
instance of a tournament, i.e. one actual arrangement. The size of the team
(the number of teams in the tournament/structure) can be denoted with the
modulus operator, e.g. |S|, for some S.

To show a structure consisting of 4 teams playing against each other in a
standard arrangement, i.e. two semi-finals leading to one final, we can represent



one semi-final as X7 ~ X5 and the other as X3 ~ X4. The way we will show
this structure will be as follows:

(X1~ Xz) ~ (X3~ Xy) (2)

Figure 1: An instance of the standard structure of 4 teams (04) in a tournament
bracket as shown in (2), with X1 = A, Xo = B, X3 =C and X4 =D

Formally, we want to define a function, f(5), such that the output of the
function is the number of different arrangements that can be made of |S| such
teams, given a fixed structure S - note that different structures may result in
different amounts of possibilities.

Earlier, we defined two teams playing against each other as X; ~ X5. Here,
we give a recursive definition of an arrangement and a structure:

o We will define a Body to be either a Team or one Body playing against
another Body, we call this a Game

e Let us give a Body the symbol B, and a T'eam the symbol T'

e So, either B = T if B is a Team, or B = BY ~ BR if B is a Game, where
Bl and B are both a (possibly different) Body

e Given two Body: B; and B, we say that By = By if and only if one of
the following conditions hold:

— By =T and By =T (they both represent the same Team)



— B = BL and B = Bf (they are both a Game, the two left Body
are identical and the two right Body are identical)

— B = BE and B = B (they are both a Game, the left Body of
one is identical to the right Body of the other and vice versa)

e Note that if By is a Team and not a Game then Bf and Bf do not
exist so the second and third conditions for being identical should not be
considered (similarly this is true for By)

e An arrangement is a Body where every Team is identical to each other.
The teams are represented using X, Xa,..., X, and X; = X, for all
1<4,5<n

e A structure is a Body where all Team are not identical, pairwise. The
teams are commonly represented using A, B,C,... and AZB#C # ...

The standard structure of size n can be represented by ©,,. The standard
structure will minimise the number of layers and ensure each layer is completely
full before filling the next layer. This resembles a complete binary tree for those
familiar with graph theory. To summarise:

e S represents a structure, a way of organising a single-elimination tourna-
ment

e An arrangement is an instance of a structure when a set of teams is sub-
stituted into it, for example, the one shown in Figure 1

n = |S| represents the size of the structure; the number of teams

f(S) is the number of unique arrangements in a structure S

O, is the standard structure, where each layer is as full as possible

f(©y,) is the number of unique arrangements in the standard structure ©,,

2 Understanding with a Simple Example

A simple exercise you can try would be to work out f(©4), where ©, is the
standard structure of a tournament of 4 teams. If you have been eagle-eyed,
you would have spotted that Figure 1 is an instance of this structure. You could
try to solve this by brute force, or otherwise. The solution to this problem is
listed just below so stop reading if you want to give this problem a try.

In plain English, we ask the reader to try to find the number of ways of
arranging a tournament where there are two semi-finals and one final round
(with 4 teams in total). If you are confused and want to see the tournament
structure, refer to Figure 1.

Common mistakes when answering this question occur when it is rushed.
Such examples are:



e 24 - this answer is very common and is obtained by counting the num-
ber of orderings of X without considering the fact that many duplicate
arrangements arise since X; ~ Xy = Xs ~ X;. For example, the ar-
rangement (A ~ B) ~ (C ~ D) and (B ~ A) ~ (C ~ D) would not be
accounted as duplicates. In this case, no effort has been made to consider
the symmetric quality of games. The calculation which leads to this is 4!.

e 6 - this answer is also extremely common, but however a good step in
the right direction. Usually, this answer comes from the understanding
that you can swap the two teams with each other in the first semi-final
and the same with the second. However, the finals cause an issue: the
arrangement (A ~ B) ~ (C ~ D) and (C ~ D) ~ (A ~ B) would not
be accounted as duplicates, which results in double-counting the answer.
This calculation that leads to this is ;—é.

The answer comes from the consideration of symmetrical arrangements of

teams both in the semi-finals and in the finals. Below, all 24 (not necessarily
unique) arrangements are listed. Arrangements equivalent to each other are
coloured in the same colour:

(A~B)~(C~D)  (A~C)~(B~D)  (A~D)~(B~C)
(A~B)~(D~C)  (A~C)~(D~B)  (A~D)~(C~B)
(B~A)~(C~D)  (B~D)~(A~C)  (B~C)~(A~D)
(B~A)~(D~C)  (BD)~(C~A)  (BaCO)~ (D~ A)
(C~D)~(A~B)  (C~A)~(B~D)  (C~B)~(A~D)
(C~D)~(B~A)  (CoA)~w(D~B) (O~ B)~ (D~ A)
(D~C)~(A~B)  (D~B)~(A~C)  (D~A)~(B~C)
(D~C)~(B~d)  (D~B)~(C~A)  (DeA)~ (C~B)

At this stage, brute force is a perfectly good way of solving this problem, as it
often avoids common and easy-to-make mistakes, as discussed above. However,
there is a nicer way of solving this that does not require iterating through all
permutations (not necessarily unique) and then removing arrangements that are
equivalent.



Another way to brute force this could be to just write down as many unique
structures as you can (essentially trying arrangements in your head and then
comparing them to existing ones, but this often leads to over or under-counting
as you can simply forget a possibility or not notice that two arrangements are
identical. This makes this solution unreliable as many errors can occur and is
not at all systematic. Whilst we only have four teams here, hopefully, it should
be easy to see that when the number of teams increases, this method becomes
less and less viable. I'm also sure that as mathematicians, we would think to
find a more mathematical solution that is not a brute force.

Instead of trying brute force, we can try to utilise elementary combinatorics.
In this method, we calculate the number of ways we can arrange 4 teams into
the structure, ignoring duplicates, which gives us 4! = 24. Then, we can divide
this value by the number of symmetries. Given the structure, (X; ~ X3) ~
(X3 ~ X4), we can see the symmetries between:

[ X1 and X2
L] X3 and X4
.XlNXQ andX3~X4

From this, we can deduce that there are 3 symmetries. For each symmetry,
we need to divide the naive number of arrangements by 2, since in this structure
each symmetry generates two equal-sized sets of equivalent arrangements (note
that the amount of games played does not necessarily equal the number of
symmetries - we can see this later). This results in the overall calculation:

;% = 3, which yields us the correct answer!

There is another intuitive solution to this problem that doesn’t use very
much maths that I thought of. This solution doesn’t work well/at all for any
other structure but is a shortcut nevertheless. Consider you are one of the
teams. From here, we can only play 3 other teams. However, picking the other
team and you being you leaves only 2 more teams. We can also see that there
are only two more vacant ’slots’ to fill and so there is no choice about the other
game. This means that only the team you play matters, therefore, there are
only 3 possible arrangements for this structure.

Some may be thinking already (perhaps not too enthusiastically) about big-
ger cases, for example, we may have 8 teams in their standard structure, or
even further thinking about a general solution for the problem, when we have
2" teams, n € N and have its standard structure.



3 Solution for f(0,), where n =2 k€N

Here we will build a recursive formula for f(©,,). First, let’s consider a couple
of small cases:

e When n =1, f(©,) =1 trivially since there are no games

e When n = 2, f(0,,) = 1 trivially since there is only one game, in which
the only two teams are forced to play each other

e When n =4, f(6,) = 3 which we brute-forced earlier on

e When n = 8, f(©,) = 315. We get this from choosing 4 teams out of
the eight to play in one of the brackets of size 4. The other 4 teams
are forced to play in the other bracket of size 4. Within each bracket of
size 4, the 4 teams can play each other in 3 ways. However, we count

each arrangement twice since the two brackets of size 4 have an identical
structure (O4). f(6,) = (}) *3x (}) x3+2=315

The last case is fascinating since it gives us an insight into how to get a

recursive formula for this case. Let us talk more generally; with n teams, we

choose 5 of them go into one of the brackets of size 5. The other 4 are forced
into the other bracket of size §. Within each bracket of size 7 there are f(©=)
ways of arranging the teams. There is a double counting of each arrangement

since both brackets of size § have identical structures. All in all, we find that:

(3)

This is a very unsightly result. We will attempt to rewrite this formula in a
more succinct way and remove the recursive aspect of it.
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This is not an especially formal proof, however, all the steps follow along.
It is also an obtainable and reasonable answer to get. It’s much cleaner than
the solution for any other structures. To even have a non-recursive formula -
with just elementary maths - is impressive. This also tells us how quickly the
numbers blow up. It would be unreasonable to try and brute-force the result
for any structure whose size is above 4 (by hand), or 16 even with a computer.
For fun, we supply a table of values below:

1 1

2 1

4 3

8 315

16 638512875

32 | 122529844256906551386796875
64 ~ 1.3757 - 107
128 ~ 2.2665 - 10177
256 ~ 1.4817 - 10%30
512 ~ 5.1870 - 101012
1024 ~ 6.0283 - 102331
2048 ~ 1.0352 - 10°27®
4096 ~ 6.9758 - 1011786
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Figure 2: A graph of log, (f(@n)) against n, for the values in the table. The 72
value is 0.9955 for this data.

From this, we can deduce with relative confidence that whatever high school
sports tournament will never be repeated. These numbers were so big we had to
change the system number limit in Python (twice!) to calculate the last few...
- the time needed to calculate was also noticeable (but not horrible).

A more intuitive way of understanding the formula can be obtained by read-
ing ahead. In the next section, I talk about calculating the number of arrange-
ments by using the property of symmetry.

As we are working with a very particular structure here, any game and
the games leading to it are all symmetrical structure-wise. You can convince
yourself by just picturing a tournament, with say, 8 teams, and then flipping
games around in your head. You will notice that any game you choose to flip
around will not at all change the structure of the tournament.

We can calculate the number of arrangements by taking into account all
tournaments assuming no symmetry - effectively how many ways can we order
n teams - which is n!, then dividing by two for each symmetry we have. As
we have previously stated that any and every game in this special structure is
symmetrical, the amount of symmetries is just equal to the number of games
played in a tournament.

To figure out the number of games played in a tournament, we can consider
that the tournament starts with n teams, and ends with 1 winner, which implies



that n—1 teams were knocked out. Since every game eliminates exactly 1 player,
there must be n — 1 games.

Therefore, there are always n — 1 symmetries in a tournament with this
specific structure - due to the fact that every game is symmetrical and there are

n — 1 games.

This leaves us with our previously-proved formula:

fOn) =55 (5)

4 Solution for f(©,), for all n € N

The solution for f(©,), where n = 2¥ k € N is quite nice and is composed
of purely mathematical functions, with a clear, defined and provable formula.
However, this obviously isn’t always the case.

For example, let’s take the example of f(Og). In our notation, this tournament
can be represented through:

(X1~ X3) ~ (X3 ~ X4)) ~ (X5 ~ Xe)) (6)
A
B
c
D
E
F

Figure 3: An instance of the standard structure of 6 teams (Og) in a tournament
bracket, with Xy = A, Xo =B, X5=C, X4y =D, Xs=F and Xg = F



Note that a team starting in the semi-finals is not equivalent to a team
starting in the quarter-finals. Knowing this, solve f(Osg).

Again, in simple English, we ask the reader to try to find the number of ways
of arranging a tournament, with 6 teams and where there are two semi-finals
and one final round, with one of the semi-finals coming from two quarter-finals.
If you are confused and want to see the tournament structure, refer to Figure
3. Again the answer will be discussed just below this, so please stop reading to
first give this exercise a go.

As before, I will go over some incorrect solutions to the problem:

e 720 - this solution is clearly obtained by taking 6!. As discussed before,
this completes ignores the symmetric property of games. If this answer
was obtained, I highly suggest you go back to read section 2 thoroughly
again.

e 15 - this solution may be obtained if you ignore the warning given just be-
fore the question, where I said starting in the semi-finals is not equivalent
to a team starting in the quarter-finals. This may seem weird, but I have
gotten this solution twice from two different clever sources so I thought I
might address it. If you considered three equal games and then divided
them by how many ways you can arrange them, you may get 15. This is

from (5) (5) (5) = 3!

e 90 - this solution is very nearly there and rather impressive! Whilst not
correct, it is very close to the answer. 90 is actually exactly double the
answer. If you got this number, please reflect briefly on where the double-
counting may have happened and then read on for the full explanation.

The most intuitive solution is reached by first spotting that if we have already
picked 2 teams (or in other words, have only 4 leftover teams), the semi-final
consisting of two quarter-finals is identical to our structure in f(©4), which
had the solution 3. This means we only now have to calculate how many ways
can we choose 2 teams from 6 teams to form the other semi-final. With basic
combinatorics, we know this is (6), which is 15. Then we can multiply 15 by

2
the 3 from before to yield 45, which is the correct answer.

For those who got 90, instead of using (g), you may have considered choosing
1 out of the 6 teams, then choosing another 1 from the remaining 5, to get 30
arrangements on the left-hand side. This is where the double-counting occurs.
Due to the symmetric property of games, the left-hand side had been double-
counted, resulting in 90 rather than 45.
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5 General Solution

Here, we will formally describe the notion of symmetry, and identical structures
and give a recursive general formula for the number of unique arrangements of
any structure S of any size n € N.

We will define a structure as 'symmetrical’ if and only if its two substructures
are identical, for this allows the swapping of teams between the two substruc-
tures. This induces a division by two in the final result.

Two structures S and T are identical if and only if S = T. Recall that a
structure is a Body, whose teams are all identical.

Let ST and S% be the substructures of structure S. Define o(S) to be a
symmetry checker: o(S) =1 <= ST = S% and 0 otherwise, or if S¥ / ¥
does not exist. Then:

f(8)=1 < |S|=1

S F(SE)f(SE (7)
sy = 152 2((,@)) B 5o

Note that (“SSL“) can equally be (‘Lil'). This is because | S|+ |ST| = |S], so

the symmetric property of Pascal’s triangle holds.

Essentially to calculate f(5), we evaluate the number of ways we can choose
teams for one side (either S* or S - and as previously stated they are the same
as (Z) = (nf k)) The rest of the players fill the other side effectively. Then,
we multiply this by the number of ways of arranging the players on each side.
Finally, we divide by two if the structure is symmetrical about this game, i.e.
St =8k,

An alternative way to think about this would be to find the number of ways
of arranging these n teams, where there is no symmetry, and then divide by
two for every symmetry that exists. We need to define another function for this

next formula:

¥(S) = B(SH) + 2(ST) + o(9) (8)
So we could also rewrite this formula as:

1(8) = oo )

Recall that X(6,,) =n—1 <= n =2¥ k € N. It’s cool how the same formula
from before manages to pop up!
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6 Finishing Remarks

We have answered the question for a given structure S. Now, as a challenge
to the reader, I suggest the following question: how many ways are there of
creating a tournament of size n, using any structure of size n? I leave this as
an exercise for the reader.

If you are able to get any advance on this, I would personally be very happy
to hear about it, because this question really intrigued me.

Feel free to contact us at gonglx8@gmail.com and mborishall@gmail.com
for anything at all.

12



